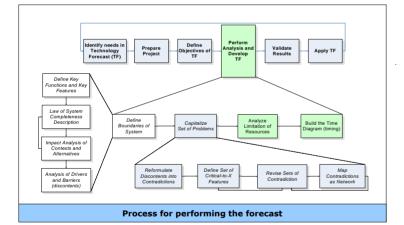


PROBLEM MAPPING FOR THE ASSESSMENT OF TECHNOLOGICAL BARRIERS IN THE FRAMEWORK OF INNOVATIVE DESIGN #368

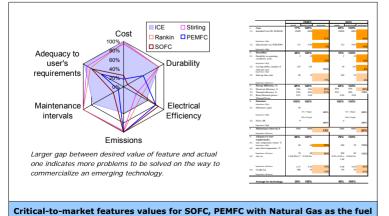
Innovation, Sustainability and Knowledge

Dmitry KUCHARAVY¹, Roland DE GUIO¹, Ludmila GAUTIER², Mathieu MARRONY² ¹LGECO - Design Engineering Laboratory, INSA Strasbourg – Graduate School of Science and Technology ²European Institute for Energy Research (EIFER), Karlsruhe

Introduction & Objectives:

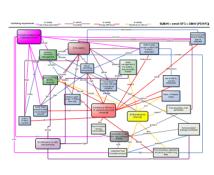

Main function of technological forecasting:

- to provide a consensual vision of the future science and technology landscape to decision makers.
- How to assess the advantages and shortcomings of emerging technologies before having experienced them?

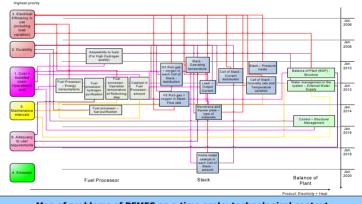

For the problem perception stage:

In order to decrease risks and make a trustworthy assessment, we should have knowledge; however, we do not have the required knowledge, because the technology is emerging.

CED⁰⁷ DESIGN FOR SOCIETY



Example of proposed analysis:


Acknowledgements:

We wish to acknowledge the European Institute for Energy Research (EIFER), Karlsruhe for support of the research.

Element - Fe ature	Value 1, V	Value 2 (opposed), A	Limiting resources	S&T, R&D activities, Project names	Exploration, years	Experimentation & examination, years
Noble metal catalyst in each Cell of Stack - amount	Low	High	Platinum needed at low temperature (<400°C)	<project 1 name></project 	<project1 duration></project1 	<time for field tests></time
<e2 -="" f2=""></e2>	<v></v>	>	<substance, Field, Time, Space etc.></substance, 	<project 2 name></project 	<project2 duration></project2 	<time for field tests></time
<e3 -="" f3=""></e3>	Present	Absent	<time, space<br="">etc.></time,>	No specific project	<project3 duration ??></project3 	<time for field tests ??></time
<>	<>	<>	<>	<>	<>	<>
<>	<>	<>	<>	<>	<>	<>
Fuel processor - Quality of outlet gas	Low	High	complex fuel processing technology for NG and biofuels	<project N name></project 	<project N duration></project 	<time for field tests></time

Network of contradictions for PEMFC & Resource limitation assessment

Map of problems of PEMFC on a time scale: technological context

Results & Conclusions:

What are the reasons of the complexity of assessing resource limitations?

- Dynamic nature of limited resources;
- Multiple contexts compatibility;
- Noise and Signal knowledge;
- Preconceived limitations, and biases of experts;
- Dynamics of necessary and sufficient description.

Two studies performed in the period from Sep. 2004 to Dec. 2006:

Problem mapping and the assessment of scarce resources assists:

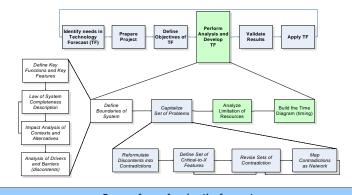
- in the assessment of technology barriers and opportunities in a *bias-free way*;
- in the accumulation of knowledge about limited resources in a structured way;
- in the recognition of the alternative pathways *independently from existing solutions*.

PROBLEM MAPPING FOR THE ASSESSMENT OF TECHNOLOGICAL BARRIERS IN THE FRAMEWORK OF INNOVATIVE DESIGN

Dmitry KUCHARAVY¹, Roland DE GUIO¹, Ludmila GAUTIER², Mathieu MARRONY²

¹LGECO - Design Engineering Laboratory, INSA Strasbourg – Graduate School of Science and Technology 24, Bd de la Victoire 67084 STRASBOURG, France dmitry.kucharavy@insa-strasbourg.fr

European Institute for Energy Research (EIFER), Karlsruhe, Emmy-Noether Strasse 11, D-76131 KARLSRUHE, Germany

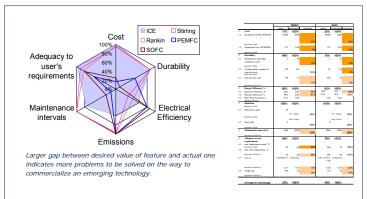

.Introduction & Objectives:

Main function of technological forecasting:

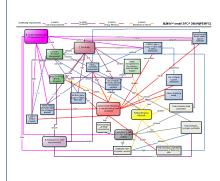
to provide a consensual vision of the future science and technology landscape to decision makers.

High quality technological forecast:

- accurate, credible and visionary; •
- to portray the evolving relationships with adequate breadth and depth;
- to provide a comprehensive description of the evolution and relationship of most critical sciences and technologies in the past, present and future:
- to provide a high degree of certainty, reliability and objectivity (bias-free)

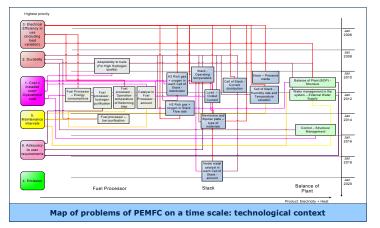


Process for performing the forecast


How to assess the advantages and shortcomings of emerging technologies before having experienced them?

For the problem perception stage:

In order to decrease risks and make a trustworthy assessment, we should have knowledge; however, we do not have the required knowledge, because the technology is emerging.



Critical-to-market features values for SOFC, PEMFC with Natural Gas as the fuel

Network of contradictions for PEMFC & Resource limitation assessment

.Results & Conclusions:

What are the reasons of the complexity of assessing resource limitations?

- at different stages of a system's evolution, different resources can be identified as 'scarce resources' - Dynamic nature of limited resources;
- it is necessary to take into account also economic, social and environmental resources. How to measure and unify all these resource limitations? - *Multiple contexts compatibility;*
- appropriate data should be collected Noise and Signal;
- for emerging technologies it is necessary to work with experts to overcome knowledge shortages the problem of *preconceived limitations, and biases* of experts;
- to identify a system it is necessary to define its boundaries, and its interaction with the environment in the dynamics - the Dynamics of necessary and sufficient description

Two studies of the future of new energy conversion technologies performed in the period from Sep. 2004 to Dec. 2006:

Problem mapping and the assessment of limited resources assists:

- in the assessment of technology barriers and opportunities in a bias-free way;
- in the accumulation of knowledge about limited resources in a structured way
- in the recognition of the alternative pathways from present to future technologies independently from existing solutions.

.Example of proposed analysis: